- お役立ち記事
- Bayesian analysis using PyMC3
Bayesian analysis using PyMC3
目次
What is Bayesian Analysis?
Bayesian analysis is a statistical method that applies Bayes’ theorem, providing a way to update the probability estimate for a hypothesis as more evidence or information becomes available.
Unlike traditional statistical methods that provide a single point estimate, Bayesian analysis offers a full distribution, which reveals more insights about a parameter’s probable value.
This approach is particularly useful when dealing with complex datasets or uncertainties, allowing one to incorporate prior knowledge or beliefs into the analysis.
Why Use PyMC3 for Bayesian Analysis?
PyMC3 is a powerful Python library that provides tools to perform Bayesian data analysis.
It is built on top of the popular numerical computing library Theano, enabling efficient computation of complex models.
PyMC3 supports a variety of probability distributions, statistical models, and powerful algorithms like Markov Chain Monte Carlo (MCMC) for sampling from the posterior distribution.
With an intuitive syntax and comprehensive documentation, PyMC3 helps users easily create and analyze Bayesian models.
Getting Started with PyMC3
Before diving into Bayesian analysis with PyMC3, you need to set up your Python environment.
Installing PyMC3 is straightforward; you can use pip, a package manager for Python.
Run the following command in your terminal or command prompt:
“`
pip install pymc3
“`
Additionally, you’ll need to install supporting libraries such as NumPy, SciPy, and pandas, which are commonly used with PyMC3 for data manipulation and analysis.
Creating Your First Bayesian Model
Let’s begin by building a simple Bayesian model using PyMC3.
Imagine you’re studying the proportion of a species of bird in a particular area.
First, import the necessary libraries:
“`python
import pymc3 as pm
import numpy as np
“`
Define the data you have collected:
“`python
observed_birds = 18
total_birds = 30
“`
Now, create your Bayesian model:
“`python
with pm.Model() as model:
proportion = pm.Beta(‘proportion’, alpha=1, beta=1)
likelihood = pm.Binomial(‘likelihood’, n=total_birds, p=proportion, observed=observed_birds)
trace = pm.sample(2000, return_inferencedata=False)
“`
In this example, we use a **Beta distribution**, which is often used as a prior for probability parameters, and a **Binomial distribution** to represent the likelihood of observing the data.
The `pm.sample` function uses the Markov Chain Monte Carlo method to generate a collection of samples from the posterior distribution.
Understanding the Results
Once sampling is complete, you can analyze the results:
“`python
pm.plot_posterior(trace)
“`
This command will display a plot showing the posterior distribution of the proportion of birds.
The range of values gives an estimate of the true proportion based on the observed data.
Interpretation of the Posterior Plot
The posterior plot shows a distribution that represents our updated beliefs after considering the observed data.
The most likely proportion of birds is indicated by the peak of the distribution.
Additionally, the plot provides credible intervals, which give a range of values for the proportion with a certain level of confidence, analogous to confidence intervals in frequentist statistics.
Expanding Your Bayesian Model
PyMC3 allows you to build complex models by incorporating additional parameters or datasets.
For instance, suppose you also have a dataset from previous years indicating the proportion of the bird species in the area:
“`python
previous_data = np.array([0.6, 0.62, 0.59, 0.63])
“`
Modify the model to include this additional information:
“`python
with model:
prior_mean = previous_data.mean()
prior_std = previous_data.std()
proportion = pm.Normal(‘proportion’, mu=prior_mean, sigma=prior_std)
likelihood = pm.Binomial(‘likelihood’, n=total_birds, p=proportion, observed=observed_birds)
trace = pm.sample(2000, return_inferencedata=False)
“`
By including past data, the model incorporates both the current observations and historical patterns to provide an even richer understanding of the probable proportion of birds.
Advantages of Using PyMC3
PyMC3 offers several benefits that make it an excellent choice for Bayesian analysis:
1. **Flexibility**: PyMC3 is versatile and allows for the construction of complex models with minimal code.
2. **Efficient Sampling**: The library uses advanced sampling algorithms optimized for performance.
3. **User-Friendly**: Its syntax is easy to learn, especially for those familiar with Python.
4. **Visualization Tools**: PyMC3 provides various tools to help visualize and interpret posterior distributions effectively.
Conclusion
Bayesian analysis provides a powerful framework to understand and interpret data through the incorporation of prior knowledge.
PyMC3 stands out as an accessible and powerful tool for performing Bayesian modeling.
Its combination of user-friendly features and advanced capabilities makes it an ideal choice for statisticians, scientists, and data enthusiasts alike.
By mastering PyMC3, you can unlock deeper insights into your datasets and make informed decisions grounded in probabilistic reasoning.
資料ダウンロード
QCD調達購買管理クラウド「newji」は、調達購買部門で必要なQCD管理全てを備えた、現場特化型兼クラウド型の今世紀最高の購買管理システムとなります。
ユーザー登録
調達購買業務の効率化だけでなく、システムを導入することで、コスト削減や製品・資材のステータス可視化のほか、属人化していた購買情報の共有化による内部不正防止や統制にも役立ちます。
NEWJI DX
製造業に特化したデジタルトランスフォーメーション(DX)の実現を目指す請負開発型のコンサルティングサービスです。AI、iPaaS、および先端の技術を駆使して、製造プロセスの効率化、業務効率化、チームワーク強化、コスト削減、品質向上を実現します。このサービスは、製造業の課題を深く理解し、それに対する最適なデジタルソリューションを提供することで、企業が持続的な成長とイノベーションを達成できるようサポートします。
オンライン講座
製造業、主に購買・調達部門にお勤めの方々に向けた情報を配信しております。
新任の方やベテランの方、管理職を対象とした幅広いコンテンツをご用意しております。
お問い合わせ
コストダウンが利益に直結する術だと理解していても、なかなか前に進めることができない状況。そんな時は、newjiのコストダウン自動化機能で大きく利益貢献しよう!
(Β版非公開)