- お役立ち記事
- Basic course on how to implement deep learning programming using Chainer
Basic course on how to implement deep learning programming using Chainer

目次
Introduction to Deep Learning and Chainer
Deep learning continues to transform industries, offering innovative solutions to complex problems.
A significant factor contributing to this advancement is the availability of powerful libraries such as Chainer.
Chainer is a flexible deep learning framework that enables users to implement neural networks with ease.
This guide will outline the basic steps needed to start deep learning programming using Chainer, even if you are new to this field.
Understanding Deep Learning
Before diving into Chainer, it’s essential to grasp the fundamental concepts of deep learning.
Deep learning is a subset of machine learning, where neural networks with multiple layers learn representations of data.
These neural networks mimic the way the human brain operates by processing information through neurons organized into layers.
Deep learning models require substantial computational power and large datasets to provide accurate results.
They are widely used in image and speech recognition, natural language processing, and autonomous systems.
Why Choose Chainer?
Chainer is an open-source deep learning framework developed by Preferred Networks.
Its dynamic computational graphs allow you to modify the network structure during runtime, offering a high level of flexibility and control.
This feature differentiates Chainer from other frameworks like TensorFlow and PyTorch.
Chainer is user-friendly, with a simple syntax that is easy to learn for beginners.
It supports multi-GPU processing, making it suitable for large-scale projects.
The community around Chainer is active, providing comprehensive documentation and various resources for support.
Setting Up Your Environment
To get started with Chainer, you’ll need to set up your programming environment.
Ensure you have Python installed on your system, as Chainer is compatible with Python 3.6 and above.
You can download the latest version of Python from the official Python website.
Next, install Chainer using pip, the Python package manager.
Run the following command in your terminal:
“`
pip install chainer
“`
For GPU support, install CuPy, a library that speeds up Python code through GPU acceleration.
Use this command:
“`
pip install cupy
“`
Ensure that your system has NVIDIA’s CUDA Toolkit installed, as it is required for CuPy and GPU support.
Creating Your First Neural Network
With Chainer and its dependencies installed, you’re ready to create your first neural network.
Start by importing the necessary libraries:
“`python
import chainer
import chainer.links as L
import chainer.functions as F
from chainer import Chain
“`
Define a neural network class by subclassing `Chain`.
You can create a simple feedforward network with the following code:
“`python
class MyNetwork(Chain):
def __init__(self):
super(MyNetwork, self).__init__()
with self.init_scope():
self.l1 = L.Linear(None, 50) # Input layer
self.l2 = L.Linear(50, 100) # Hidden layer
self.l3 = L.Linear(100, 10) # Output layer
def __call__(self, x):
h1 = F.relu(self.l1(x))
h2 = F.relu(self.l2(h1))
return self.l3(h2)
“`
This code defines a network with three layers: an input layer, a hidden layer, and an output layer.
The `F.relu()` function applies a ReLU activation function to introduce non-linearity.
Training Your Neural Network
To train your neural network, use a dataset and an optimizer.
For this example, we’ll use a dummy dataset and the `Adam` optimizer:
“`python
from chainer import datasets, iterators, optimizers
from chainer import training
from chainer.training import extensions
# Create a dummy dataset with 100 samples
dataset = datasets.get_mnist(ndim=1)
train, test = datasets.split_dataset_random(dataset, 50000, seed=0)
train_iter = iterators.SerialIterator(train, batch_size=128)
test_iter = iterators.SerialIterator(test, batch_size=128, repeat=False, shuffle=False)
# Initialize the model
model = L.Classifier(MyNetwork())
# Setup an optimizer
optimizer = optimizers.Adam()
optimizer.setup(model)
# Setup a trainer
updater = training.StandardUpdater(train_iter, optimizer, device=-1)
trainer = training.Trainer(updater, (20, ‘epoch’), out=’result’)
# Add extensions for evaluation and logging
trainer.extend(extensions.Evaluator(test_iter, model, device=-1))
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport([‘epoch’, ‘main/loss’, ‘validation/main/loss’,
‘main/accuracy’, ‘validation/main/accuracy’]))
trainer.extend(extensions.ProgressBar())
# Train the model
trainer.run()
“`
This example uses the MNIST dataset, a collection of handwritten digits.
The `Adam` optimizer helps adjust the weights of the network during training.
The training process runs for 20 epochs, logging progress and accuracy.
Evaluating Your Model
After training, evaluate your model’s performance using the test dataset.
The `extensions` package in Chainer simplifies this process, providing metrics like loss and accuracy.
Evaluate the model with the following code:
“`python
test_iter.reset()
evaluator = extensions.Evaluator(test_iter, model, device=-1)
result = evaluator()
print(‘Test accuracy:’, result[‘main/accuracy’])
“`
This evaluation helps you understand how well the model performs with unseen data.
Conclusion
This guide introduced you to the basics of implementing deep learning programming using Chainer.
By setting up your environment, defining a neural network, training, and evaluating it, you’ve taken crucial steps into the world of deep learning.
Chainer’s flexibility and ease of use make it an excellent choice for beginners and experienced developers alike.
As you continue your deep learning journey, explore Chainer’s documentation and experiment with different network architectures to develop more complex models.
資料ダウンロード
QCD管理受発注クラウド「newji」は、受発注部門で必要なQCD管理全てを備えた、現場特化型兼クラウド型の今世紀最高の受発注管理システムとなります。
NEWJI DX
製造業に特化したデジタルトランスフォーメーション(DX)の実現を目指す請負開発型のコンサルティングサービスです。AI、iPaaS、および先端の技術を駆使して、製造プロセスの効率化、業務効率化、チームワーク強化、コスト削減、品質向上を実現します。このサービスは、製造業の課題を深く理解し、それに対する最適なデジタルソリューションを提供することで、企業が持続的な成長とイノベーションを達成できるようサポートします。
製造業ニュース解説
製造業、主に購買・調達部門にお勤めの方々に向けた情報を配信しております。
新任の方やベテランの方、管理職を対象とした幅広いコンテンツをご用意しております。
お問い合わせ
コストダウンが利益に直結する術だと理解していても、なかなか前に進めることができない状況。そんな時は、newjiのコストダウン自動化機能で大きく利益貢献しよう!
(β版非公開)