投稿日:2024年12月23日

Fundamentals of 3D measurement, high-speed and high-precision technology, and key points for design and development

Understanding 3D Measurement

3D measurement is a technique used to capture the geometric properties of objects, surfaces, or environments in three dimensions.
This method allows for capturing the detailed dimensions of an object, providing essential data used across different fields such as engineering, manufacturing, architecture, and healthcare.
Unlike traditional two-dimensional measurement techniques, 3D measurement offers a more comprehensive view, enabling accurate analysis and representation of the object in question.

There are various technologies used for 3D measurement, including laser scanning, photogrammetry, and structured light.
Each of these techniques has its unique principles and applications.

For instance, laser scanning involves emitting laser beams onto the object’s surface to collect accurate data points.
On the other hand, photogrammetry uses photography to measure distances, while structured light employs patterns of light projected onto the object to measure 3D shapes.

High-Speed and High-Precision Technology

In today’s fast-paced industries, the demand for high-speed and high-precision 3D measurement technologies is more prevalent than ever.
These advanced technologies enable rapid data capture while maintaining accuracy, making them ideal for applications such as quality control, reverse engineering, and prototyping.

High-speed 3D measurement technologies make it possible to scan objects quickly without compromising the data’s accuracy.
This is particularly important in manufacturing, where time efficiency can significantly impact productivity and costs.

High-precision technologies, on the other hand, ensure that the measurements obtained are extremely accurate, often down to micrometer levels.
This precision is vital for industries such as aerospace and automotive, where even the smallest discrepancy can result in significant operational issues.

Some of the high-speed, high-precision technologies available include 3D laser scanners, coordinate measuring machines (CMMs), and structured light scanners.
These tools utilize advanced algorithms and sensors to provide rapid and precise measurements, enhancing the design and development processes.

Key Points for Design and Development

For effective design and development, understanding 3D measurement is crucial.
Here are some key points to consider when integrating 3D measurement into your processes:

1. Define Measurement Objectives

Before embarking on a 3D measurement project, it’s important to clearly define the objectives.
This involves understanding what you need to measure and why.
By having a clear purpose, you can select the appropriate technology and method for your project, ensuring that the results align with your goals.

2. Choose the Right Technology

Selecting the right 3D measurement technology depends on various factors, including the size and complexity of the object, the required precision, and the data processing capabilities.
For instance, if you’re measuring small, complex components, a CMM might be more suitable, whereas larger objects might require a laser scanner.
Make sure to evaluate the pros and cons of each technology to find the best fit for your needs.

3. Ensure Proper Calibration

Accurate calibration of 3D measurement tools is essential for obtaining reliable data.
Regular maintenance and calibration of equipment help prevent errors and ensure the precision of measurements.
It’s crucial to adhere to manufacturer guidelines and best practices for calibration to maintain the integrity of your measurement process.

4. Analyze Data Effectively

The data collected through 3D measurement offers valuable insights and can be utilized for different purposes, including design evaluation and quality control.
However, to fully benefit from this data, it’s important to analyze it effectively.
Utilizing powerful data processing software can enhance your ability to interpret and act on the information gathered, leading to better decision-making processes.

5. Integrate with Other Technologies

The integration of 3D measurement with other technologies, such as computer-aided design (CAD) and manufacturing systems, can significantly amplify its benefits.
By combining these technologies, you can create a seamless workflow from measurement to production, improving efficiency and reducing the time to market.

6. Train Personnel

Employing 3D measurement technology requires skilled personnel who understand both the equipment and the data analysis processes.
Training your team ensures they can effectively operate the tools and interpret the data, thereby enhancing the productivity and accuracy of your projects.

Conclusion

The fundamentals of 3D measurement, coupled with high-speed and high-precision technology, provide a robust framework for design and development across various industries.
By understanding the principles, selecting the right tools, and implementing best practices, businesses can harness the power of 3D measurement to drive innovation and maintain a competitive edge.
Investments in technology, training, and process integration will ensure successful implementation and maximize the return on investment in 3D measurement solutions.

資料ダウンロード

QCD調達購買管理クラウド「newji」は、調達購買部門で必要なQCD管理全てを備えた、現場特化型兼クラウド型の今世紀最高の購買管理システムとなります。

ユーザー登録

調達購買業務の効率化だけでなく、システムを導入することで、コスト削減や製品・資材のステータス可視化のほか、属人化していた購買情報の共有化による内部不正防止や統制にも役立ちます。

NEWJI DX

製造業に特化したデジタルトランスフォーメーション(DX)の実現を目指す請負開発型のコンサルティングサービスです。AI、iPaaS、および先端の技術を駆使して、製造プロセスの効率化、業務効率化、チームワーク強化、コスト削減、品質向上を実現します。このサービスは、製造業の課題を深く理解し、それに対する最適なデジタルソリューションを提供することで、企業が持続的な成長とイノベーションを達成できるようサポートします。

オンライン講座

製造業、主に購買・調達部門にお勤めの方々に向けた情報を配信しております。
新任の方やベテランの方、管理職を対象とした幅広いコンテンツをご用意しております。

お問い合わせ

コストダウンが利益に直結する術だと理解していても、なかなか前に進めることができない状況。そんな時は、newjiのコストダウン自動化機能で大きく利益貢献しよう!
(Β版非公開)

You cannot copy content of this page