- お役立ち記事
- A procedure for identifying state equation models without hesitation Continuous system transfer function state equation system identification Transfer function to state equation conversion DC motor example
A procedure for identifying state equation models without hesitation Continuous system transfer function state equation system identification Transfer function to state equation conversion DC motor example

目次
Introduction to System Identification
System identification is a crucial process in control engineering that involves developing mathematical models of dynamic systems from measured data.
These models help in analyzing, predicting, and controlling system behavior.
In practical scenarios, especially in control system design, it’s essential to identify the state equation models of systems.
This process often begins with the identification of transfer function models, which can then be converted into state space representations.
Understanding Transfer Functions
Transfer functions are mathematical representations of the input-output behavior of linear, time-invariant (LTI) systems.
They are typically represented in the Laplace domain and consist of a ratio of polynomials.
The numerator and denominator polynomials represent the system’s zeros and poles, respectively.
Basic Structure of Transfer Functions
A transfer function, G(s), can be expressed as:
\( G(s) = \frac{N(s)}{D(s)} \)
Where:
– \( N(s) \) is the numerator polynomial
– \( D(s) \) is the denominator polynomial
Transfer functions are particularly useful for understanding system stability, frequency response, and transient response characteristics.
State Equation Models
State equation models are another way to represent dynamic systems, involving a set of first-order differential equations.
They describe the internal state of the system at any given time and provide insight into the dynamics between state variables and outputs.
Formulating State Space Equations
The standard form of a continuous-time state space model is:
\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) \\
y(t) &= Cx(t) + Du(t)
\end{align*}
\]
Where:
– \( x(t) \) is the state vector
– \( \dot{x}(t) \) is the derivative of the state vector
– \( u(t) \) is the input vector
– \( y(t) \) is the output vector
– \( A, B, C, D \) are matrices with appropriate dimensions
Conversion from Transfer Function to State Equation
While transfer functions provide a straightforward input-output relationship, the state space representation offers more comprehensive model information.
The conversion from a transfer function to a state space model can be done systematically.
Step-by-Step Conversion Process
1. **Determine System Order**:
– The system order is determined by the degree of the denominator polynomial.
2. **Controllability Canonical Form**:
– Convert the transfer function into the controllability canonical form.
– This form expresses matrices \( A, B, C, \) and \( D \) based on the coefficients of the transfer function polynomials.
3. **Formulate State Matrices**:
– Construct the matrix \( A \) using negative coefficients of the denominator (without the leading coefficient).
– Create the matrix \( B \) as a column vector, usually with a ‘1’ at its topmost position.
– Construct the matrix \( C \) using the numerator coefficients and modifying according to the denominator’s order.
– The matrix \( D \) is typically taken from DC gain or set to zero in the absence of direct gain.
Example: DC Motor System
To illustrate the concept, consider the dynamics of a simple DC motor.
The transfer function of the DC motor can be represented as:
\( G(s) = \frac{K}{(Ls + R)(Js + b) + K^2} \)
Where:
– \( L \) is the inductance
– \( R \) is the resistance
– \( J \) is the inertia
– \( b \) is the damping coefficient
– \( K \) is the motor constant
Identifying the State Equation Model
1. **Identify Poles and Zeros**:
– The poles are derived from the denominator, while zeros are from the numerator.
2. **Canonical State Space Representation**:
– Given that the DC motor transfer function simplifies to second-order, matrices \( A, B, C, \) and \( D \) are derived using the procedure outlined.
3. **Real-World Application**:
– This state space model can be employed to design control systems, such as motor speed or position controllers.
– Simulation tools or numerical methods can simulate system performance, feeding into control design.
Conclusion
In summary, identifying continuous system transfer function models and converting them to state space equations is a fundamental process in dynamic system analysis and control design.
Through systematic steps, engineers can leverage these mathematical models to optimize and control various engineering systems, such as DC motors.
By understanding both transfer function and state space representations, control engineers are better equipped to develop robust, efficient control systems that meet design criteria and performance expectations.
資料ダウンロード
QCD管理受発注クラウド「newji」は、受発注部門で必要なQCD管理全てを備えた、現場特化型兼クラウド型の今世紀最高の受発注管理システムとなります。
NEWJI DX
製造業に特化したデジタルトランスフォーメーション(DX)の実現を目指す請負開発型のコンサルティングサービスです。AI、iPaaS、および先端の技術を駆使して、製造プロセスの効率化、業務効率化、チームワーク強化、コスト削減、品質向上を実現します。このサービスは、製造業の課題を深く理解し、それに対する最適なデジタルソリューションを提供することで、企業が持続的な成長とイノベーションを達成できるようサポートします。
製造業ニュース解説
製造業、主に購買・調達部門にお勤めの方々に向けた情報を配信しております。
新任の方やベテランの方、管理職を対象とした幅広いコンテンツをご用意しております。
お問い合わせ
コストダウンが利益に直結する術だと理解していても、なかなか前に進めることができない状況。そんな時は、newjiのコストダウン自動化機能で大きく利益貢献しよう!
(β版非公開)