投稿日:2025年3月4日

Fundamentals of finite element method (FEM) and its application to various structural analyzes

Understanding the Finite Element Method (FEM)

The Finite Element Method (FEM) is an essential tool in engineering and mathematical modeling that provides numerical solutions to complex problems.
It has become a foundation in analyzing structural, fluid, thermal, and electromagnetic systems.
This method works by dividing a large system into smaller, simpler parts known as finite elements.
These elements are interconnected at points called nodes.
By applying equations to each element, engineers and scientists can solve for unknowns such as displacement, temperature, or stress.

Basic Concepts of FEM

At its core, FEM is built upon several fundamental concepts like discretization, meshing, and interpolation functions.
Discretization involves breaking down a continuous domain into a finite number of elements.
These elements can be one-dimensional (such as beams), two-dimensional (like shells), or three-dimensional (such as volumes).
The choice of element type significantly influences the accuracy of results and the complexity of calculations.

Meshing is another crucial step in FEM, where the domain is represented by a mesh composed of elements.
The quality of a mesh determines the precision of the simulation.
A finer mesh typically leads to more accurate results but requires greater computational power and processing time.

Interpolation functions, also known as shape functions, approximate the solution over each element.
They are essential for transferring information between elements and allow for the determination of variable values within an element based on its nodes.

Application in Structural Analysis

FEM is widely used in structural analysis to predict how structures will respond to various forces or conditions.
Engineers rely on FEM to assess the safety, efficiency, and performance of buildings, bridges, vehicles, and machinery.
By using FEM, they can simulate scenarios like static loading, dynamic loading, and thermal expansion.

In static analysis, FEM helps in determining the deformation and stresses in a structure under a set load condition.
This is vital for ensuring that the structures can withstand everyday forces without failing.

Dynamic analysis is another application where FEM simulates the behavior of structures under time-varying loads, such as in earthquakes or machinery vibrations.
It allows the prediction of dynamic responses, helping engineers design structures that can endure such conditions.

FEM also plays a role in thermal analysis, where it predicts the temperature distribution and heat flow within a structure.
This is crucial for materials and components exposed to significant thermal variations, ensuring they maintain functionality over a range of temperatures.

Beyond Structural Analysis: Other FEM Applications

While structural analysis is one of the primary uses of FEM, its applications extend into various other fields.
In the aerospace industry, FEM is used to design and optimize aircraft components by simulating flight conditions and material stresses.

The automotive industry employs FEM for crash simulations, helping design safer and more efficient vehicles.
FEM enables the study of how a vehicle deforms upon impact, guiding improvements in design for passenger safety.

Additionally, FEM is crucial in electromagnetic analysis, where it helps design electrical devices by simulating fields and currents.
Engineers use it to optimize components such as antennas and sensors, ensuring better performance and efficiency.

The method is also vital in biomechanics for modeling biological structures and simulating surgical procedures.
By predicting how living tissues respond to forces, FEM assists in creating better prosthetics and medical devices.

Advantages of Using FEM

FEM offers numerous benefits in problem-solving and analysis.
Its versatility enables the tackling of complex, multi-physics problems that involve several interacting phenomena.
The method’s capability to handle irregular shapes and varying material properties makes it suitable for realistic modeling of real-world scenarios.

Furthermore, FEM allows for greater control over simulations by letting users refine the mesh and adjust elements as needed for higher accuracy.
The ability to simulate and visualize the physical phenomena promotes a better understanding of how systems behave under different conditions.

Challenges and Considerations in FEM

Despite its advantages, users must be cautious about several challenges when utilizing FEM.
The method demands significant computational resources, especially for large-scale or finely-meshed models.
Choosing the right software and hardware is critical for efficient processing and accurate results.

User expertise is also crucial, as FEM results heavily depend on mesh quality, boundary conditions, and the choice of elements and shape functions.
Inaccurate inputs can lead to misleading outcomes, risking the integrity of the design process.

FEM simulations should be verified and validated against known solutions or experimental data to ensure their reliability.
Ongoing training and expertise development are necessary for keeping up with advances in FEM technology and methods.

Conclusion

The Finite Element Method is an indispensable tool in modern engineering and research, providing solutions for complex problems across various domains.
Its ability to model dynamic systems and predict their behavior under various conditions enhances the design, safety, and functionality of myriad structures and devices.
While challenges exist, the continued development and refinement of FEM practices promise even greater precision and application in the future.

ノウハウ集ダウンロード

製造業の課題解決に役立つ、充実した資料集を今すぐダウンロード!
実用的なガイドや、製造業に特化した最新のノウハウを豊富にご用意しています。
あなたのビジネスを次のステージへ引き上げるための情報がここにあります。

NEWJI DX

製造業に特化したデジタルトランスフォーメーション(DX)の実現を目指す請負開発型のコンサルティングサービスです。AI、iPaaS、および先端の技術を駆使して、製造プロセスの効率化、業務効率化、チームワーク強化、コスト削減、品質向上を実現します。このサービスは、製造業の課題を深く理解し、それに対する最適なデジタルソリューションを提供することで、企業が持続的な成長とイノベーションを達成できるようサポートします。

製造業ニュース解説

製造業、主に購買・調達部門にお勤めの方々に向けた情報を配信しております。
新任の方やベテランの方、管理職を対象とした幅広いコンテンツをご用意しております。

お問い合わせ

コストダウンが重要だと分かっていても、 「何から手を付けるべきか分からない」「現場で止まってしまう」 そんな声を多く伺います。
貴社の調達・受発注・原価構造を整理し、 どこに改善余地があるのか、どこから着手すべきかを 一緒に整理するご相談を承っています。 まずは現状のお悩みをお聞かせください。

You cannot copy content of this page