- お役立ち記事
- Basics and practice of data analysis and AI learning using Python
月間73,982名の
製造業ご担当者様が閲覧しています*
*2025年1月31日現在のGoogle Analyticsのデータより

Basics and practice of data analysis and AI learning using Python

目次
Introduction to Data Analysis and AI Learning with Python
Python has emerged as a powerful tool for data analysis and artificial intelligence (AI) learning due to its simplicity and robust libraries.
For anyone new to these fields, Python offers an accessible entry point with a vast array of resources and community support.
This guide aims to introduce the basics of data analysis and AI learning using Python, providing a foundation upon which you can build more advanced skills.
Why Choose Python for Data Analysis?
Python is a versatile programming language known for its simple syntax, which makes it easy to learn and use.
It is particularly popular in data science for several reasons:
1. **Rich Ecosystem of Libraries**: Python boasts a wide range of libraries specifically designed for data analysis and machine learning, such as NumPy, Pandas, Matplotlib, TensorFlow, and Scikit-learn.
2. **Community Support**: The Python community is vast and active, offering numerous tutorials, forums, and user groups to help beginners and experts alike.
3. **Integration Capabilities**: Python easily integrates with other languages and technologies, making it flexible for various data analysis tasks.
4. **Open Source**: Being open-source, it allows individuals and organizations to use and modify the software freely, fostering innovation and collaboration.
Getting Started with Python
To get started with Python for data analysis, you need to have Python installed on your computer.
You can download the latest version from the official Python website.
Once installed, consider setting up a virtual environment to manage your projects and dependencies efficiently.
Installing Key Libraries
After setting up Python, you’ll need to install some key libraries.
These include:
– **NumPy**: Essential for numerical computations.
– **Pandas**: Offers data manipulation and analysis tools.
– **Matplotlib and Seaborn**: Useful for data visualization.
– **Scikit-learn**: A comprehensive library for machine learning.
You can install these libraries using pip, the Python package manager, with the following command:
“`
pip install numpy pandas matplotlib seaborn scikit-learn
“`
Basic Python Data Structures
Before diving into data analysis, understanding basic Python data structures is crucial.
Here are some fundamental ones:
Lists
Lists are ordered, mutable collections that can hold various data types.
They are useful for storing sequences of items.
Example:
“`python
fruits = [‘apple’, ‘banana’, ‘cherry’]
“`
Dictionaries
Dictionaries store data in key-value pairs, providing an efficient way to retrieve information.
Example:
“`python
student_info = {‘name’: ‘John’, ‘age’: 25}
“`
DataFrames
DataFrames are a central feature of the Pandas library and resemble a spreadsheet.
They allow for manipulating and analyzing data efficiently.
Example:
“`python
import pandas as pd
data = {
‘Names’: [‘Alice’, ‘Bob’, ‘Charlie’],
‘Scores’: [85, 90, 88]
}
df = pd.DataFrame(data)
“`
Data Analysis Techniques in Python
Once comfortable with Python basics, you can explore various data analysis techniques.
Below are some common methods employed in Python:
Data Cleaning
Data cleaning is the process of preparing your data for analysis by correcting or removing corrupt or inaccurate records.
Using Pandas, you can handle missing data, filter unnecessary columns, and normalize your datasets.
Data Visualization
Data visualization is a crucial step in data analysis, providing insights through graphical representations.
Matplotlib and Seaborn are commonly used libraries for creating plots and charts.
For example, you can create a simple line chart with Matplotlib:
“`python
import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4], [10, 20, 25, 30])
plt.ylabel(‘Y-axis’)
plt.xlabel(‘X-axis’)
plt.title(‘Sample Line Plot’)
plt.show()
“`
Statistical Analysis
Statistical analysis allows you to draw conclusions from your data.
Utilizing libraries like SciPy, you can perform t-tests, linear regression, and other statistical tests.
Introduction to AI Learning with Python
Artificial intelligence, particularly machine learning, involves teaching computers to make decisions based on data.
Python’s libraries facilitate straightforward AI model creation and training.
Supervised Learning
Supervised learning involves training a model on a labeled dataset.
Scikit-learn is widely used for implementing algorithms like linear regression, decision trees, and support vector machines.
Example of training a simple linear regression model:
“`python
from sklearn.linear_model import LinearRegression
# Sample data
X = [[1], [2], [3], [4]]
y = [10, 20, 30, 40]
model = LinearRegression()
model.fit(X, y)
predictions = model.predict([[5]])
“`
Unsupervised Learning
Unsupervised learning deals with unlabeled data, aiming to infer patterns and structure.
Common techniques include clustering and dimensionality reduction, implemented using Scikit-learn.
Conclusion
Python provides an extensive framework for data analysis and AI learning, accessible to beginners and powerful enough for advanced practitioners.
Whether you’re cleaning and visualizing data or developing machine learning models, Python’s libraries offer the tools necessary to tackle complex problems.
As you advance, exploring more specialized libraries and frameworks will enhance your capabilities in data analysis and AI learning.
資料ダウンロード
QCD管理受発注クラウド「newji」は、受発注部門で必要なQCD管理全てを備えた、現場特化型兼クラウド型の今世紀最高の受発注管理システムとなります。
ユーザー登録
受発注業務の効率化だけでなく、システムを導入することで、コスト削減や製品・資材のステータス可視化のほか、属人化していた受発注情報の共有化による内部不正防止や統制にも役立ちます。
NEWJI DX
製造業に特化したデジタルトランスフォーメーション(DX)の実現を目指す請負開発型のコンサルティングサービスです。AI、iPaaS、および先端の技術を駆使して、製造プロセスの効率化、業務効率化、チームワーク強化、コスト削減、品質向上を実現します。このサービスは、製造業の課題を深く理解し、それに対する最適なデジタルソリューションを提供することで、企業が持続的な成長とイノベーションを達成できるようサポートします。
製造業ニュース解説
製造業、主に購買・調達部門にお勤めの方々に向けた情報を配信しております。
新任の方やベテランの方、管理職を対象とした幅広いコンテンツをご用意しております。
お問い合わせ
コストダウンが利益に直結する術だと理解していても、なかなか前に進めることができない状況。そんな時は、newjiのコストダウン自動化機能で大きく利益貢献しよう!
(β版非公開)