投稿日:2025年3月17日

Basics of image processing using OpenCV 3 and practical programming course

Introduction to Image Processing with OpenCV

OpenCV, short for Open Source Computer Vision Library, is a powerful tool used for image processing.
It allows developers to create innovative solutions across various fields, from robotics to augmented reality.
This course will cover the basics of image processing using OpenCV 3, along with practical programming techniques that will strengthen your understanding.

Installing OpenCV

Before diving into image processing, the first step is to install OpenCV.
OpenCV is available for different platforms, making it accessible and easy to set up.
To install OpenCV 3, you can use Python’s package manager, pip.
Simply run the following command in your terminal or command prompt:

“`
pip install opencv-python
“`

For advanced functionalities, consider installing opencv-python-headless and opencv-contrib-python packages.
These additional packages will open up a wider range of features and modules for your projects.

Loading and Displaying Images

Once OpenCV is installed, you can start by loading and displaying an image.
This is a crucial step in understanding image processing.
First, import the cv2 module, then use the `cv2.imread()` function to read an image file:

“`python
import cv2

# Load an image from file
image = cv2.imread(‘example.jpg’)
“`

To display the loaded image, use the `cv2.imshow()` function:

“`python
cv2.imshow(‘Displayed Image’, image)
cv2.waitKey(0)
cv2.destroyAllWindows()
“`

The `cv2.waitKey(0)` function waits indefinitely for a keystroke before closing the window with `cv2.destroyAllWindows()`.

Basic Image Operations

Certain basic operations are fundamental in image processing.
These include extracting regions of interest (ROI), resizing images, and color conversions.

Extracting Regions of Interest

Sometimes, you may only need a particular part of an image for processing.
This is done by defining the region of interest:

“`python
roi = image[50:200, 100:300]
cv2.imshow(‘Region of Interest’, roi)
cv2.waitKey(0)
cv2.destroyAllWindows()
“`

In this example, `image[y1:y2, x1:x2]` is used to slice the image array, where `y1`, `y2`, `x1`, and `x2` define the top-left and bottom-right corners of the ROI.

Resizing Images

Resizing an image is another common task. Use the `cv2.resize()` function to achieve this:

“`python
resized_image = cv2.resize(image, (300, 300))
cv2.imshow(‘Resized Image’, resized_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
“`

Here, the image is resized to 300×300 pixels.
Adjust the dimensions according to your needs.

Color Conversion

Images can be converted between color spaces using OpenCV.
A typical conversion is from BGR (default in OpenCV) to grayscale:

“`python
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv2.imshow(‘Grayscale Image’, gray_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
“`

This conversion is essential in many image processing tasks that do not require color information.

Applying Filters to Images

Filters can enhance images or extract certain features.
Two common filters are blurring and edge detection.

Blurring

Blurring smooths out image noise and reduces detail:

“`python
blurred_image = cv2.GaussianBlur(image, (5, 5), 0)
cv2.imshow(‘Blurred Image’, blurred_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
“`

The `(5, 5)` kernel size determines how smooth the final image will be.
Experiment with different sizes to see the effect.

Edge Detection

Edge detection is vital in identifying object boundaries within an image.
The Canny edge detector is a popular choice:

“`python
edges = cv2.Canny(image, 100, 200)
cv2.imshow(‘Edges’, edges)
cv2.waitKey(0)
cv2.destroyAllWindows()
“`

The function parameters can be adjusted to control sensitivity and strength of the edges detected.

Practical Programming Course Overview

This practical programming course leverages OpenCV to teach essential image processing skills.
Each section builds on the previous one, helping you gain confidence and proficiency.

Project-Based Learning

Through hands-on projects, you’ll tackle real-world challenges using OpenCV.
Projects include simple face detectors, photo filters, and image classification.

Collaboration and Community

Learning does not happen in a vacuum; engaging with a community enhances it.
You’ll have access to forums and collaborative platforms where ideas and solutions can be shared.

Tools and Resources

The course provides a plethora of resources, from video tutorials to documentation.
These will deepen your understanding and help you troubleshoot any issues that arise.

Conclusion

The journey through the basics of image processing using OpenCV is full of exciting opportunities.
With practical skills honed through this programming course, you’ll be equipped to develop innovative solutions to complex problems.
Whether for personal projects or professional applications, OpenCV offers a gateway to the world of computer vision.
Continue exploring, keep practicing, and soon you’ll be crafting proficient image processing applications.

ノウハウ集ダウンロード

製造業の課題解決に役立つ、充実した資料集を今すぐダウンロード!
実用的なガイドや、製造業に特化した最新のノウハウを豊富にご用意しています。
あなたのビジネスを次のステージへ引き上げるための情報がここにあります。

NEWJI DX

製造業に特化したデジタルトランスフォーメーション(DX)の実現を目指す請負開発型のコンサルティングサービスです。AI、iPaaS、および先端の技術を駆使して、製造プロセスの効率化、業務効率化、チームワーク強化、コスト削減、品質向上を実現します。このサービスは、製造業の課題を深く理解し、それに対する最適なデジタルソリューションを提供することで、企業が持続的な成長とイノベーションを達成できるようサポートします。

製造業ニュース解説

製造業、主に購買・調達部門にお勤めの方々に向けた情報を配信しております。
新任の方やベテランの方、管理職を対象とした幅広いコンテンツをご用意しております。

お問い合わせ

コストダウンが重要だと分かっていても、 「何から手を付けるべきか分からない」「現場で止まってしまう」 そんな声を多く伺います。
貴社の調達・受発注・原価構造を整理し、 どこに改善余地があるのか、どこから着手すべきかを 一緒に整理するご相談を承っています。 まずは現状のお悩みをお聞かせください。

You cannot copy content of this page